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Structure of the temperature profile within a high-pressure gas- 
discharge lamp operating near maximum radiation efficiency 

H.K.  K U I K E N  
Philips Research Laboratories, P.O. Box 80.000, 5600 JA Eindhoven, The Netherlands 

Abstract. A singular perturbation technique is used to describe the temperature profile in a wall-stabilized 
high-pressure gas-discharge arc in the limit of extremely high radiation efficiency. The analysis shows that the profile 
is characterized by three different regimes, one of which is a transition layer. 

Introduct ion  

In this pape r  we shall investigate a certain aspect of the t empera ture  field produced by a 
high-pressure gas-discharge arc. The  arc is assumed to be enclosed within an elongated 
cylindrical tube,  i.e. it is a so-called wall-stabilized arc. Such a configuration can be 
technologically important  as a high-yield light source. A simplified sketch of such a system is 
given in Fig. 1. 

Two electrodes stick into the tube at both ends.  When the lamp is operat ing,  these 
electrodes are extremely hot, so that they are easily induced to emit  electrons. The electric 
field causes these electrons to accelerate,  thereby imparting large amounts  of energy to 
them.  The  tube is filled with a gas such as mercury or sodium. Because of the high pressure 
in the tube ( f rom 5 up to 100 atmospheres) ,  the mean free path of  the gas molecules is very 
short ,  thus collisions with the hot electrons are extremely frequent.  During a collision 
be tween an electron and a gas molecule the electron loses part  of its energy which is 
t ransferred to the gas molecule.  The electrons soon regain their previous energy levels 
through the interaction with the electric field. 

When  a gas molecule absorbs energy as the result of a collision with an electron, the 
energy transfer  may be, roughly speaking, of three different kinds. The energy may be used 
to increase the t empera tu re  of the gas, meaning that it may be returned as translational,  
vibrat ional  and rotational energy. Indeed,  when equilibrium has been reached,  the electron 
t empera tu re  and the gas t empera tu re  are the same in a high-pressure gas discharge. This is 
normal ly  known as local thermal  equilibrium (LTE) .  A second energy-transfer  mode  is the 
one in which electrons in the outer  valence band of the gas molecule are excited to higher 
quan tum levels. Such a higher state may be unstable and, as a result, an excited electron will 
re turn to the lower state, possibly through a succession of intermediate states. During this 
process photons  are emitted.  As a crude approximat ion these may be thought  to belong to 
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Fig. 1. Sketch of a gas-discharge tube. 
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two different categories: a) ones that leave the tube without interference; these constitute the 
lamp's radiation, both visible and invisible; b) ones that are absorbed within the plasma by 
the gas molecules; this constitutes an added heat-transfer mechanism. The former is called 
thin radiation and the second is thick radiation. A third electron-gas energy-transfer mode is 
that in which a gas molecule is ionized. In this process an electron is knocked loose, thereby 
becoming a free electron. 

A knowledge of the temperature field is extremely important for a proper understanding 
of how a lamp operates. We shall consider the temperature distribution away from the 
electrodes where it may be thought to depend solely upon the radial coordinate r, assuming 
stationary conditions. We shall also assume that convection effects are absent, although in 
larger tubes, particularly in those which are in a vertical position, convection effects may 
dominate [1, 2, 3]. The one-dimensional rotationally symmetric model we wish to investigate 
was first described by Elenbaas. A summary of his work can be found in his book on the 
high-pressure gas discharge [4]. More recent accounts can be found in [5, 6]. Recently, we 
have shown [7, 8, 9] that this classical model can be treated by asymptotic methods. Since 
asymptotic methods are capable of giving a much clearer insight into the structure of 
solutions than could be achieved by any direct computational approach, we decided that the 
field was worth revisiting. 

What  we intend to study in this paper is a particular question left open in [9]. It concerns 
the structure of the temperature field when the maximum radiation efficiency is approached. 
In that case some important quantities characterizing the arc become singular. It is important 
to know how. 

The model 

As explained in [9], the temperature distribution in the middle section of an elongated tube 
containing a high-pressure gas-discharge arc is governed by the equation 

1 d rA(t) dt 
r dr  d r  + ° ' ( t ) E 2 -  u(t)  = 0 ,  (1) 

where t is the temperature, r the distance to the axis symmetry, E the electric field and A(t), 
or(t) and u(t)  the temperature-dependent thermal conductivity, electrical conductivity and 
radiation output terms, respectively. The electric field E, which is assumed to be uniform, 
and the total arc current I are related as follows: 

E = I 2rrror(t) d r ,  (2) 

where a is the inner tube radius. The thermal conductivity is assumed to represent ordinary 
thermal conduction and short-range radiation effects. The latter, which is usually called thick 
radiation, is to be attributed to photons emitted and absorbed by nearby molecules. It has 
been shown [9] that the analysis is independent of the particular functional description of 
A(t). It may even be given in tabulated form. 

The electrical conductivity is given by 

or(t) = y t  3j4 exp( -  ti/t  ) , (3) 
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where  ti is equal to half the ionization tempera ture .  If  V~ is the ionization potential ,  i.e. the 
potent ial  that has to be overcome to dislodge totally an outer  electron f rom the valence band 

of a gas molecule,  then t i = e V J 2 k ,  where e is the e lementary  charge and k is Bol tzmann 's  
constant.  Further ,  y is some constant.  

Next  we have to consider the radiation te rm u( t )  which represents  the so-called thin 
radiat ion which leaves the tube without hindrance. In [9] we model led this as follows: 

u( t )  = o~t p e x p ( - t , / t ) ,  (4) 

where  the t empera tu re  t,--= e V , / k  represents  an effective quantized state f rom which 
radiat ion occurs. Since ionization represents  the highest energy level attainable,  we always 
have 

t ,  < 2t i . (5) 

Fur ther ,  oJ is a constant.  The exponent  p is usually taken as - 1 .  Boundary  conditions are 
defined as follows: 

dt 
d--r = 0 at r = 0 (symmetry)  , (6) 

t = t  w at r = a ,  (7) 

where t w is the (observed)  t empera tu re  at the inner tube wall. 
It has been  emphasized before [7 ,8 ,9]  that an effective t rea tment  of  a complicated 

nonlinear  system such as the one defined by equations (1 -6)  can only be done when the 
system is proper ly  nondimensionalized.  Clearly, r can be rendered dimensionless by means of 
the tube ' s  inner radius a. Arguments  were presented in [7, 8, 9] that the t empera ture  is best 
rendered  dimensionless by referring to the axis t empera ture  tr, which is the max imum 
tempera tu re  in the system. Typical values of t r are 3000 K-4000 K for sodium arcs and 
5000 K-6000  K for mercury arcs. These values are considerably higher than t w which can be 
in the range of 1000 K-1500  K, but much lower than either t i or t ,  which are in the range of 
50000 K-100000 K. Therefore ,  neither t w nor ti or t ,  are suitable reference temperatures .  In 
view of the above,  we introduce dimensionless variables as follows: 

R = r / a ,  T =  t / t  r . (8) 

Since t r is now assumed to have a known value, another  pa ramete r  has to be turned into 
an unknown instead. The most  natural  choice will be the arc current I. By doing this, we 
invert the prob lem definition. Instead of asking which maximum tempera ture  I r results f rom 
a given, i.e. observed,  arc current,  we ask ourselves what arc current  is needed to achieve a 
required axis tempera ture .  

We shall not repeat  here the complete  derivation of the final equat ion we wish to 
investigate. This has already been done in [9], to which we refer for the details. It  suffices to 
note  that  by means of a Kirchhoff  t ransformation an auxiliary function Q replacing T is 
defined as follows: 

f ~  h(t~7") 
Q = T i A(tr---" ~ dT, (9) 
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where 

ti (10) 
Ti  = t~ 

is a large parameter .  Because of this, small variations in T result in large variations in Q. As 

a result, all the interesting phenomena  occur in a region where T is close to unity. 
Asymptot ics  for T i >~ 1 lead to the following equation for Q: 

1 d dQ _Q e-~° 
d---Z Z ~-~ = e - f , (11) 

where Z is the stretched radial coordinate 

Z = R ( H T i )  1/2 . (12) 

For  the definition of H we refer  to ei ther [8] or [9]. This pa ramete r  is related to the current I 
and is therefore  unknown.  It grows exponentially with T i. It is emphasized that for Z = O(1) 
the coordinate  R is much less than unity. The pa ramete r  f is related to the radiation 
efficiency of the arc. It  can assume values in the interval 

0 4  ~ < 1. (13) 

Fur ther ,  we have 

t ,  
• / = - -  , (14) 

ti 

so that  in view of (5) r~ is always less than 2. In this paper  we shall only consider values of 
in the interval 

1 < 7 / < 2 .  (15) 

Boundary  conditions at Z = 0 are easily obtained f rom (6) and the requirement  that  t = t r at 
r = O :  

dQ 
Q = O ,  d z - O  at Z = O .  (16) 

The  condition at the inner tube wall now reads 

f~ z(trv) Q = T,  w ) t( tr)  d T  at Z = ( n T i )  1/2 . (17) 

We shall not concern ourselves here with condition (17). Its role in the determinat ion of H 
is one of the main subjects of ref. [9]. Hence ,  we refer to that paper  for the details. Instead,  
we consider the structure of solutions of  the system consisting of equations (11) and (16) for 
f~ ' l .  We shall show that the solution reveals some singular characteristics in that limit. 
Indeed ,  if ~ = 1, the system admits of the solution Q ~ 0. Numerical  solutions for values of f 
close to unity show Q-plots which are not at all as simple as that, or even close to it. These 
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numerical calculations [9] also indicate that high-performance lamps operate at values of 
close to unity. This is why a special analysis of the structure of solutions in this range seems 
warranted.  

Asymptotics for ~ 1'1 (or e~O) 

Let  us write 

~ : = l - e  (18) 

and consider asymptotics for e+0. Equat ion (11) now reads 

-Z1 dzZ-d--zd dQ = e_ Q _  e - ' °  + e  e -ÈQ . (19) 

Since Q = 0 is a solution for e = 0, we consider small values of Q first. By introducing 

Q = eP, (20) 

and expanding the exponential  functions for small values of the arguments,  we find to first 
order  in e: 

1 d d P  
2 d Z  Z ~ - ( 7 / - 1 ) P = I .  (21) 

Since P must satisfy the conditions imposed upon Q by equation (16), we arrive at 

E 
Q - -q - 1 { l ° ( ( r / -  1 ) 1 / 2 Z )  - 1},  (22) 

where I 0 is a modified Bessel function. Since (see Eq. 9.7.1 of [10]) 

Io(x ) ~ eX(27rx) -~/2 for x - - * ~ ,  (23) 

we conclude that eventually Q is no longer small. For large values of Z we have 

Z -- (*7 - 1)-~/2{12(e) + c 1 + l o g ( Q ) } ,  (24) 

where 

c~ = 1 log(ZTr) + log(n - 1) (25) 

and 

= (26) 

Clearly, the function Q becomes of order  unity when Z - ( r / -  1)-1/2~(e) is of order  
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unity. To  describe the function Q in this region we introduce the translated coordinate z as 
follows: 

Z = (-q - 1)-1/2~ + z ,  (27) 

where  z is O(1)  in the limit e$0. Since Q is now assumed to be of order  unity, no further  
scaling is necessary. Introducing (27) in (19), assuming that Q and its derivatives with 
respect  to z are all of order  unity, we obtain the equat ion 

dZQ - e -O - e -n°  (28) 
dz  2 

The  solution to this equat ion must match with the previous one in accordance with the rule 
(24) for z---~ ~,  i.e. 

z -  ( ~ / -  1)-1/2{cl + l o g ( Q ) }  for z - - - ~ - ~  ( Q ~ 0 ) .  (29) 

On integrating equat ion (28) once, we obtain 

l ( d z ~  -2 1 
\~- -~!  = c o n s t a n t -  e - °  + -- e -n° . (30) 

If the solution to this differential equation is to behave in accordance with the matching 
condition (29), the constant must be equal to 1 - - 1 .  Integrating once more ,  we find 

fl ° Z = C 2 + 2 -1/2 dq (31) 
{ 1 -  e -q  - ( 1 -  e - " q ) / n } l / 2  , 

where c 2 is a constant of integration. It can easily be shown that the behaviour  of (31) for 
Q+0 is 

z ~ c 2 + c 3 + (77 - 1) -1/2 l o g ( Q ) ,  (32) 

where 

c3 = Oq - 1 ) ' / 2 Q  2'/2{ 1 - -  e - O  - -  (1 - e - n O ) / ~ }  1 / 2  

By compar ing (29) and (32), we conclude that the integration constant c 2 is given by 

c2 = c l ( n -  1) - ' / 2 -  c3. (34) 

On the other  hand, the behaviour  of equat ion (31) for z ~> 1 is given by 

{ 77 }t/2 
Z ~ C 2 q- C 4 -~- 2(r / --  1) Q '  (Q--+oo),  (35)  

where 
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Apparently,  this solution approaches an oblique asymptote with an intercept on the Z-axis at 
z = c 2 + c 4 or, using (27), at 

Z = Z 0 = (n - 1)- ' /2fl(~) + C2 "q- C4 (37) 

and a slope equal to {~7/2(rl - 1)} 1/2 • 
In Fig. 2 we present a schematic picture of the two regions which emerged from the 

analysis so far. First we have region I in which Q remains O(e). The Z-range, in which this 
part of the solution defined by (22) is valid, extends up to distances from the origin which are 
O(l~(e)). This is followed by a region II in which Q and its derivatives rise rapidly to values 
that are of order unity. The width of this region is of order unity. This part of the solution is 
defined by equations (27) and (31). The differential equation which governs the solution in 
region II is given by equation (28). From this equation the term Z -~ dQ/dZ is absent. 
Indeed,  with Q and its derivatives being of order unity here, the term Z -1 renders this 
particular term O(fU]) .  We shall see later that this term regains first-order importance in a 
third region in which both Z and Q are allowed to tend to infinity. 

Region III 
The solution we found in region II, the transition region, applies as long as z is much smaller 
than ~(e) .  Suppose z = 611(e), where 6 is a small but fixed parameter (0 < 6 ,~ 1). Letting 
e$0, we conclude that the solution in region II is given approximately by the asymptote of 
equation (35). The term Z -1 dQ/dZ is still of the order of ~ -a  and the term e x p ( - Q )  is of 
the order exp(-~-f~), where ~- is some constant larger than zero and independent of e. 



46 H . K .  Kuiken  

Therefore,  as soon as we are well into the tail of the solution in region II, the exponentials 
are negligibly small in comparison with the other terms in the equation. This leads to the 
conclusion that the solution in region III is governed by the differential equation 

d2Q 1 dQ 
d Z  ----~ + Z d---Z - O. (38) 

The solution must approach the asymptote (35) from the other side, i.e. 

Q = 0 ,  d Z -  a t Z = Z  0. (39) 

The solution to this problem is 

Q = 2( 1) z o l o g ( Z / Z o ) .  (40) 

This expression shows that in the outer region Z 0 is the natural scaling factor for both Q and 
Z. (See also Fig. 2.) 

Composite solutions 

We can define composite solutions on the basis of the partial solutions that are valid in 
regions I, II and III, respectively. Because of the way in which the solution is given in region 
II, we shall define composite solutions with Q as the independent variable. The common 
(matched) part of the solutions in regions I and II is 

CP(I, II) = (7 - 1)-I/2~(e) + c2 + C3 + (7"/ - -  1 )  - 1 / 2  l og (Q) .  (41) 

This follows from (27) and (32). Therefore, the composite solution which comprises the 
regions I and II is 

Zcomp(I, II) = ( r / -  1) -~/2 inv lo(Q('o - 1)/e) + Z n - CP(I, I I ) ,  (42) 

where inv I 0 denotes the inverse Bessel function I 0. Further, Z .  is defined by (27) and (31). 
This solution applies in the interval 

0~< Z~< (1 + 6 )Z0 ,  (43) 

where 6 is a small, but fixed, positive constant (0 < 6 ~ 1). 
When Q is of the order of e, the inv I 0 function represents a non-trivial contribution to 

(42). It can easily be shown that ZII is then approximately equal to the common part. On the 
other hand, when Q becomes much larger than e, the common part cancels approximately 
the first term on the right of (42). The latter result will be used in a later section. 

It is also possible to make a composite solution on the basis of the solutions that are valid 
in the regions II and III. The part these two solutions have in common is defined by (27) and 
(35). Therefore, 
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Fig. 3. Zcomp(I , II) given by dashed curve and Zcomp(II , III) given by fully drawn curve for e = 0.01 and 7/= 1.5. 
The  dot ted line represents  the intermediate  asymptote.  

Fig. 4. The  tempera ture  function Q for four different values of  e. (7/= 1.5) 

Zc°mp(II'III)=ZII+Z°exp (2r / - -~) !  Z 0 - Z ° - " ( 2 ~ - - - 1 ) 1  a '  (44) 

where Z n is defined by the sum of equations (27) and (31). This composite solution applies in 
the regions II and III. This renders it at once more practical than equation (42). Indeed, 
since the values of Q in region I are only O(e), the overall picture of the temperature profile 
is well represented by (44). A graph showing the two composite expansions is presented in 
Fig. 3, together with the intermediate asymptote. 

Figure 4 shows temperature profiles for various values of e and ~7 = 1.5. These profiles 
indicate that the transition layer moves further and further away from the origin, as e 
becomes smaller and smaller. The changeover from region I to region III seems to become 
more and more rapid. It is also interesting to note that two different profiles have a point in 
common outside the origin. The envelope of the family of curves can easily be calculated 
from Eq. (40), namely by varying the parameter Z 0. This envelope is the straight line 
Q = (2(rt - 1)/r/) 1/2 e - ' Z .  

Characteristic functions 

In the analysis of reference [9] two functions gl(~,~) and g2(~,7/) are of particular 
importance. They are defined by the asymptotic behaviour of Q for Z---*~: 

Q ----~ gl(~,  77) log(Z) - g2(~, r/). (45) 
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From the analysis of this paper we conclude the following (see equations (40), (37) and 
(18)): 

gl(~, T]) = (2/r/)~/2{1~(1 - £) + 0 ( 1 ) } ,  (46) 

g 2 ( ~ ,  n )  = g l ( ~ ,  11) l o g ( ( , / -  1)-1/2~~(1  - ~ )  -1- O ( 1 ) }  ( 4 7 )  

for so1'1. Another useful quantity defined in [9] is the lamp's efficiency: 

W= ¢ ; ;  Z e-"° d Z / f ;  Z e-° dZ . (48) 

To be able to calculate this function we must evaluate asymptotically the integral 

f; I (v )  = 2 Z e -~e(z)  d Z  . (49) 

Since Q is a monotonically increasing function of Z we obtain from integration by parts: 

I ( v )  = ½v f ;  Z 2 e - v °  d Q .  (50) 

In view of the availability of the two composite solutions (42) and (44), we shall write 

fo Q° 2 fQ~ 2 ±v Z¢omp(II, III) e -"°  dQ (51) l ( v )  = ½ v Zcomp(I , II) e -va dQ + 2 0 

where 

Q0 = Q((1 + 6 ) Z o ) ,  (52) 

with 0 < 6 ~ 1 fixed. It can easily be seen that Q0 is well within the asymptotic range defined 
by (35). Therefore, the upper bound of the first integral of (51) can be replaced by oo. The 
very first part of the integration range, where Q is of the order of e, can be disregarded, 
since its contribution to the integral is asymptotically zero, namely O(e), with respect to the 
terms retained. Therefore, the first integral reads approximately 

e -~0 dQ 
½v f ;  Z n e -~° dQ - 2(-0 - 1) + (,0-7171/2 e - O  ~--~- _-TnQ) /,o} l/2 

f (1 - e -~°) dQ } 
-2-~/2ao  I { 1 - e  - °  ( 1 - e - ' O ) / n )  1/2 

+ 0(~'~).  (53) 

The second integral of (51) can be shown to be asymptotically smaller than any of the terms 
retained in (53). Equation (48) can now be evaluated for ~1'1, i.e. for e$0. After some 
manipulations we find 

W-- 1 - 23/2('17 - 1) '0-1/21"~-1(e)  + O ( { ~ - I )  , (54) 

showing that the radiation-efficiency parameter tends to unity when £1"1 or e$0. 
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In [9] we derived 

g,(~, 7)) = f ]  Z(e -°  - ~ e no) d Z  = I(1) - I(r/) .  (55) 

Using the result of Eq. (53), we find for sC~'l 

g , (  ~,  r / )  ~ 2 - 1 / 2 ( 7 / - -  1)-'/211(1 - ~ )  Jo  

= 2 1 / 2 r / - 1 / 2 ~ ( 1  __ ~ )  • 

e - Q  _ e-nQ 

{ 1 -  e - e -  ( 1 -  e-n°) / r t}  1/2 dQ 

(56) 

By comparing this with (46), we conclude that the leading-order terms match. This may 
serve as a useful check on the correctness of the present analysis. 

Concluding remarks 

In this paper we have described the asymptotic form of the temperature profile in a 
wall-stabilized high-pressure gas-discharge arc, when the radiation-efficiency parameter 
approaches unity. This case applies when the heat-input term and the radiation-loss term 
become almost equally important. In this limit the temperature remains virtually constant 
( t - -  tr) in a central portion of the arc. This is followed by a thin transition region in which 
the temperature profile rapidly bends downwards. Both the heat-input term and the 
radiation-loss term play a first-order role in these two regions. Next to the transition region, 
away from the axis, the temperature profile follows a simple logarithmic rule. In this region, 
which extends all the way to the inner tube wall, neither the energy source nor the loss term 
play a first-order role. For the practical implementation of the results of this paper and for a 
more complete discussion of these, we refer to the companion paper [9]. 

In this communication we have limited ourselves to presenting the leading-order terms of 
the three expansion solutions. Clearly, these suffice for bringing out the structure of the 
temperature profile. It would seem to be possible to derive a few more terms in each of the 
expansions. However, we postpone that to a future paper [11]. To illustrate that, apart from 
bringing forth the structure of the asymptotic temperature profiles, the leading terms of the 
asymptotic expansions are also capable of giving useful numerical results, we present Table 
1. This table gives asymptotic and numerically evaluated values of the radiation-efficiency 

Table 1. Radiation efficiency W for various values of e and for , / =  1.5 

logm(e) Equation (54) Exact (numerical) 

- 1  0.575 0.594 
- 2  0.785 0.768 
- 3  0.853 0.842 
- 4  0.888 0.880 
- 5 0.9093 0.9036 
- 6  0.9237 0.9194 
- 7  0.9341 0.9308 
- 8  0.9419 0.9393 
- 9  0.9481 0.9460 
- 1 0  0.9531 0.9513 
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parameter W. The numerical values were obtained with the software discussed in ref [9]. 
Clearly, even for e = 0.1 or ~ = 0.9 the asymptotic result is quite useful. It is interesting to 
note that e must become extremely small for W to approach the limiting value of unity. Since 
radiation efficiencies larger than 0.5 are not uncommon for many lamps, the asymptotic 
treatment would seem to be quite useful. 

To conclude, we remark that the problem area studied here shows great similarities with 
certain fields in combustion theory. Expressions such as (3) or (4), with rapidly varying 
exponential terms, are also characteristic of problems dealing with thermal explosions. 
Singular perturbation techniques are frequently needed to describe the solutions of such 
problems adequately. We refer to [12, 13] for further details. What seems to distinguish our 
problem from combustion problems is that we have to deal with two competing exponential 
functions, as shown by equation (11). In this paper we studied what happens when this 
competition is at its extreme. 
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